In vitro analysis of mechanisms underlying age-dependent failure of axon regeneration.

نویسندگان

  • Aziz Hafidi
  • Martin Grumet
  • Dan H Sanes
چکیده

Severed axons of the inferior colliculus (IC) commissure can regenerate across a lesion in organotypic cultures from postnatal day (P) 6 gerbils, but this regenerative capacity is lost by P12 (Hafidi et al. [ 1995] J Neurosci 15:1298-1307, [1999] J Neurobiol 41:267-280). In the present study, we examined the mechanisms underlying this age-dependent failure of axons to regenerate. In P6-P12 heterochronic cultures, the P12 axons failed to cross the lesion site and project to the contralateral P6 IC lobe. In contrast, axons originating from the P6 lobe could regenerate through the lesion and invade the contralateral P12 IC lobe. To determine whether this age-dependent change in regenerative capacity can develop in organotypic cultures, IC slices with an intact commissure were obtained from P6 animals, grown in vitro for 6 days, and then lesioned at the commissure. In these slices, axon regeneration failure was similar to that observed in normal P12 tissue. Several in vitro treatments enhanced axon regeneration: removal of the entire midline region, inhibition of protein synthesis at the lesion site, and exposure to ABC chondroitinase. Furthermore, when the injured commissural axons were provided with a carpet of C6-R cells (a radial glia-like cell line), significantly more axons projected to the contralateral lobe of the IC. Taken together, these results suggest that the maturation of nonneuronal cells within the lesion site lead to failed axon regeneration in mature animals, and show that ameliorative strategies can be evaluated in vitro.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOCS3 Deletion Promotes Optic Nerve Regeneration In Vivo

Axon regeneration failure accounts for permanent functional deficits following CNS injury in adult mammals. However, the underlying mechanisms remain elusive. In analyzing axon regeneration in different mutant mouse lines, we discovered that deletion of suppressor of cytokine signaling 3 (SOCS3) in adult retinal ganglion cells (RGCs) promotes robust regeneration of injured optic nerve axons. Th...

متن کامل

Age-dependent failure of axon regeneration in organotypic culture of gerbil auditory midbrain.

Inferior colliculus (IC) slice cultures from postnatal (P) day 6-8 gerbils exhibit axonal regeneration across a lesion site, and these regrowing processes can form synapses. To determine whether regenerative capacity is lost in older tissue, as occurs in vivo, slices from P12-21-day animals were grown under similar conditions. While these cultures displayed a near complete loss of neurons over ...

متن کامل

Cell intrinsic control of axon regeneration.

Although neurons execute a cell intrinsic program of axonal growth during development, following the establishment of connections, the developmental growth capacity declines. Besides environmental challenges, this switch largely accounts for the failure of adult central nervous system (CNS) axons to regenerate. Here, we discuss the cell intrinsic control of axon regeneration, including not only...

متن کامل

Distinct cellular and molecular mechanisms mediate initial axon development and adult-stage axon regeneration in C. elegans.

The molecular and cellular mechanisms that allow adult-stage neurons to regenerate following damage are poorly understood. Recently, axons of motoneurons and mechanosensory neurons in adult C. elegans were found to regrow after being snipped by femtosecond laser ablation. Here, we explore the molecular determinants of adult-stage axon regeneration using the AVM mechanosensory neurons. The first...

متن کامل

Differentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold

       The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 470 1  شماره 

صفحات  -

تاریخ انتشار 2004